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Abstract

A forced radially outward ¯ow with secondary, buoyancy induced convection has been studied numerically in an
axisymmetric geometry, consisting of two di�erentially heated, horizontal, coaxial, circular plates with a diameter of

25 times their mutual spacing. A forced laminar ¯ow is supplied through the centre of the upper plate. The onset of
thermal instability, leading to axisymmetric and three-dimensional rolls, has been determined as a function of the
Reynolds, Prandtl and Rayleigh numbers. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Buoyancy driven secondary convection in a forced
laminar ¯ow may lead to heat transfer enhancement

and the onset of turbulence. The understanding of
thermal and ¯ow characteristics in this so-called mixed
convection is of practical importance, e.g. in the design

of compact heat exchangers and chemical vapor depo-
sition reactors, or in the cooling of microelectronic
equipment. In addition, these phenomena are of theor-
etical importance in view of assessing the di�erent

routes to turbulence. Accordingly, a number of theor-
etical, experimental and numerical studies have been
carried out to investigate mixed convection [1±7].

In mixed convection, the nonlinear interaction of the
laminar forced ¯ow and free convection may cause a
range of complex ¯ow transitions. Examples are sym-

metry breaking in an otherwise symmetric geometry,
the existence of multiple stable steady ¯ows, and tran-

sition to transient or turbulent ¯ows [8±10]. These
types of instabilities highly depend on geometry and
boundary conditions. Even with large aspect ratios,

boundary conditions may determine the ¯ow in the
entire con®nement. For example, at low Rayleigh num-
bers, the buoyancy induced ¯ow between two large

horizontal plates with isothermal vertical side-walls is
completely di�erent from that in the presence of insu-
lated vertical side-walls [11]. Therefore, in practise, it is

di�cult to distinguish between the e�ect of the con®ne-
ment and the interaction of the forced and the second-
ary ¯ow.
In this paper, a numerical study is presented on the

mixed convection ¯ow in the geometry as schematically
shown in Fig. 1. The geometry consists of two horizon-
tal circular plates, the bottom plate being kept at a

higher temperature than the top one. The diameter of
the plates is large compared to their mutual distance.
Through a hole in the middle of the top plate, a forced

downward ¯ow is supplied, which ¯ows radially out-
ward between the plates.
The forced ¯ow is laminar and axisymmetric, and

suppresses the onset of thermal instabilities. How-
ever, the characteristic velocity and with that the
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strength of the forced convection, decreases with the

radial coordinate. The secondary ¯ows, caused by

buoyancy e�ects, are nonaxisymmetric and have a

constant characteristic velocity throughout the geo-

metry. The interaction of these two ¯ows is deter-

mined as a function of the Reynolds, Grashof and

Prandtl numbers.

In the study of mixed convection, the advantage of

this geometry over the often used square duct is, that

there are no vertical side walls to enforce a certain

¯ow. This, however, is attained at the cost of some

entrance e�ects. Applications of this geometry can be

found, in (plasma enhanced) chemical vapor deposition

reactors [12] and electro-chemical detectors [13]. As an

example, CVD reactors are mostly axisymmetric and

are often operated in the mixed convection ¯ow

regime. Detailed knowledge on ¯ow transitions such as
symmetry breaking therefore may be crucial for econ-
omical operation of these reactors.

2. Theoretical background

2.1. Flow between two di�erentially heated horizontal

plates

In the absence of forced ¯ow, the ¯uid between two
in®nite horizontal plates, the bottom plate being at a

higher uniform temperature than the top one, becomes
unstable when the buoyancy forces are su�ciently

Nomenclature

a Thermal di�usivity (m2/s)
c Constant
~e3 Unitvector in the axial direction

g Acceleration of gravity (m2/s)
H Distance between the plates (m)
Nr,y,z Number of grid cells in r-, y-, z-direction
Pr Prandtl number
p Dimensionless pressure
Ra Rayleigh number

Racr Critical Rayleigh number
Racr,trans Critical Rayleigh number transversal rolls
Racr,long Critical Rayleigh number longitudinal

rolls

Re Reynolds number
r Radial coordinate (m or ±)
rmax Maximum radial coordinate

T Temperature (K)
Th Temperature hot plate (K)
Tc Temperature cold plate (K)

DT Temperature di�erence (K)
t Dimensionless time
U Characteristic velocity vector (m/s)
~u Dimensionless velocity vector
uin Dimensionless inlet velocity
vr Radial velocity (m/s)

z Axial coordinate (m or ±)
a Thermal expansion coe�cient (1/K)
Fv Volumetric ¯ow rate (m3/s)
n Kinematic viscosity (m2/s)

Y Dimensionless temperature
y Circumferential coordinate (radians)

Fig. 1. Schematic of the geometry.
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strong compared to the viscous forces. A linear stab-
ility analysis shows that the characteristic dimension-

less group is the Rayleigh number (Ra=gH 3aDT/na ),
and that its critical value, Racr, is 1708 [14,15]. In an
in®nite geometry, this instability should lead to a direc-

tionally independent ¯ow, e.g. corresponding to the
well-known hexagonal Rayleigh±BeÂ nard cells. At Ray-
leigh numbers slightly above critical, the ¯ow pattern

is steady. Increasing the Rayleigh number changes this
pattern, and eventually, depending on the Prandtl
number, the ¯ow becomes transient.

In practise, there is always some e�ect of the bound-
aries, which may result in more irregular ¯ow struc-
tures, or two-dimensional convection rolls [11,16]. For
example, in a square duct with insulated side walls,

irregular three-dimensional rolls are found, while cold
or hot side walls enforce a particular direction of the
buoyancy rolls. In general, the distance between the

plates is the characteristic length of these ¯ow struc-
tures.
In the presence of a forced ¯ow, the transition is

more complicated. In an in®nite geometry, the critical
Rayleigh number for disturbances perpendicular to the
¯ow is still 1708, independent of the values of the Rey-

nolds and Prandtl numbers. These disturbances lead to
a steady 3D ¯ow, with so-called longitudinal free con-
vection rolls, i.e. rolls with their rotation axes in the
direction of the ¯ow [11]. The critical Rayleigh number

for disturbances travelling along the direction of the
¯ow, so-called transversal rolls, is higher, and is a
function of the Reynolds and Prandtl numbers (see

Fig. 2). The forced convection has a stabilising e�ect
on disturbances travelling along the direction of the
¯ow. In addition, increasing the Prandtl number stabil-

ises these disturbances. In a good approximation to

the data of Muralidhar and Kulacki [17], the critical
Rayleigh number for transversal rolls, minus the criti-

cal Rayleigh number for longitudinal rolls, is pro-
portional to the Prandtl number:

Racr,trans ÿ Racr,long1Pr� f �Re� �1�

The ¯ow pattern for Rayleigh numbers slightly
above critical is steady, and consists of longitudinal

rolls. Increasing the Rayleigh number eventually leads
to transient ¯ows, depending on the Reynolds and
Prandtl numbers.

In a con®ned geometry, such as a square duct, the

side walls are of in¯uence. These may favour longitudi-
nal, transversal, or irregular three-dimensional rolls.
This changes Fig. 2, especially at low Reynolds num-

bers and at Rayleigh numbers near critical. Numerical
and experimental examples can be found in Refs.
[1,5,18].

2.2. The geometry studied

In the absence of buoyancy induced ¯ows, the
forced ¯ow in the geometry under study (see Fig. 1) is

laminar and axisymmetric. The velocity ®eld, after an
entrance region and terms of order 1/r 3 being ignored,
corresponds to a Poiseuille pro®le, with the average

velocity decreasing inversely proportional to radius r:

vr�r,z� � 1

r

3Fv

pH 3
z�Hÿ z� �2�

with vr(r,z ) the velocity in the r-direction, H the spa-
cing of the two plates, and Fv the volumetric ¯ow rate.
The axisymmetry imposing e�ect of the forced ¯ow

decreases with r. This is not only due to the decreasing
characteristic radial velocity, but also because the ¯ow
increasingly resembles the two-dimensional ¯ow in a

rectangular duct when the `curvature ratio' H/r
decreases.

In the absence of forced ¯ow, the buoyancy induced
¯ow resembles the standard Rayleigh±BeÂ nard case.

Small di�erences can be expected owing to the open
boundary. In contrast to the forced ¯ow, therefore, the
buoyancy induced or secondary ¯ow is not axisym-
metric.

When both a forced ¯ow and a temperature

di�erence are applied, the forced and the free con-
vection will interact. The resulting secondary ¯ows
may be separated in (i) transversal rolls, i.e. two-

dimensional, axisymmetric torus-shaped rolls, and
(ii) irregular, three-dimensional rolls. Longitudinal
rolls, with axes of rotation in the direction of the

radial forced ¯ow, are unlikely, since the geometry
would enforce an improbable wedge-like shape on
these rolls. Longitudinal rolls therefore can be

Fig. 2. E�ect of Re and Pr on the critical Rayleigh number,

after data from Muralidhar and Kulacki [17].
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expected to immediately transform into irregular

three-dimensional rolls.
The critical Rayleigh number for the transversal,

torus-shaped rolls may be related to the critical

Rayleigh numbers for transversal rolls in Fig. 2.
The Reynolds number, however, has to be corrected

for the radial dependency of the characteristic
forced ¯ow velocity. This means that, for Ra >
Racr,long and a ®xed in¯ow rate, there is a radial coor-

dinate where the characteristic velocity of the forced
¯ow is su�ciently low to allow for transversal rolls.
Save for di�erences owing to the circular shape of the

rolls, Fig. 2 gives a good approximation for the Ray-
leigh and Prandtl dependency of this radial coordinate.

Once transversal rolls have been formed, they
move radially outward, their radial velocity being
related to the mean forced ¯ow. The radial velocity

of the rolls therefore can be expected to decrease
with the radial coordinate, as the characteristic vel-
ocity of the forced ¯ow decreases with the radial

coordinate.
Provided that the ¯ow remains axisymmetric, a con-

servation equation for the transversal rolls can be
deduced. The number of rolls per unit of time that
passes the ®rst radial coordinate, equals the number of

rolls per unit of time that passes the second radial
coordinate minus the number of rolls that disappears

per unit of time in between. For the ¯ow to remain
axisymmetric and the velocity of the rolls to decrease,
therefore either the radial size of the rolls must

decrease, or rolls must coalesce. The size of the rolls is
not likely to decrease, since it is dictated by the spacing
of plates. Therefore, when there are transversal rolls,

symmetry breaking and/or roll coalescence is to be
expected. This e�ect decreases with increasing radial

coordinate.
There is a second mechanism that may lead to

breakup of transversal rolls. Figure 2 shows that, in

a parallel ¯ow, the critical Rayleigh number for
longitudinal rolls is una�ected by the ¯ow. At larger
radial coordinates, the forced ¯ow resembles parallel

¯ow. Therefore, even though purely longitudinal free
convection rolls in this geometry are unlikely, at large

radii, buoyancy induced ¯ows can be expected, insen-
sitive to the actual value of the Reynolds number.
These secondary ¯ows result in irregular, three-

dimensional free convection rolls. In a square duct,
the ¯ow becomes transient and irregular when both
transversal and longitudinal rolls may occur. Simi-

larly, in the present geometry, transversal rolls can be
expected to breakup when they pass the radial

coordinate where three-dimensional rolls are possible.
If the radial coordinate where these three-dimensional
rolls may occur is smaller than the coordinate where

transversal rolls are possible, transversal rolls even
will be impossible at all.

3. Numerical method

3.1. Basic equations

The ¯ow can be described by the Boussinesq ap-
proximated Navier±Stokes equations. Made dimen-

sionless with characteristic distance H, a characteristic
velocity U and the temperature di�erence ThÿTc, these
are as follows.

Conservation of mass

r � ~u � 0 �3�
Conservation of momentum

@ ~u

@ t
� ~u � r~u � 1

Re
r2 ~uÿ rp� Ra

Re2Pr
Y~e3 �4�

Conservation of energy

@Y
@ t
� ~u � rY � 1

Re� Pr
r2Y �5�

The spacing of the plates is the obvious choice for
the characteristic distance H. For the characteristic vel-
ocity U there are two possibilities, either that of the
forced convection or that of the free convection. In

this study, the characteristic velocity of the forced con-
vection is selected. The magnitude of the buoyancy
e�ects then can be isolated in Ra, whereas the magni-

tude of the forced ¯ow is entailed in Re. Their relative
importance is given by the so-called mixed convection
parameter Ra=�Re2Pr�: In the geometry under investi-

gation, the characteristic velocity for forced convection
is a function of the radial position (see Eq. (2)). In
order to characterise the ¯ow uniquely, a single charac-
teristic velocity has to be selected. In this paper, this is

selected as vr(H,0.5H ) in Eq. (2).

3.2. Discretisation

The geometry under investigation is axisymmetric,
but the ¯ow between the plates may not be axisym-
metric. Therefore, the Navier±Stokes equations are

solved in three-dimensional cylindrical coordinates.
Disadvantage is the comparatively high number of
cells required in the y-direction. This, however, is com-
pensated by the computational e�ciency of orthogonal

coordinates.
Equations (3)±(5) are discretised in space using a

2nd order accurate Finite Volume method on a stag-

gered grid. For the time discretisation, the 2nd order
accurate explicit leap-frog scheme with lagged di�usion
terms is applied in the r- and z-direction [19]. To make

the coupling between odd and even time-steps, an
Asselin ®lter is used with a ®lter constant of 0.05 [20].
In the y-direction, the 2nd order accurate implicit
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Crank±Nicholson scheme is used to avoid strict time-
step limitations.

The boundary conditions at the inlet, and at the
lower and upper plate are Dirichlet boundary con-
ditions:

z � 04Y � 1; ~v � ~0 �6�

z � 14Y � 0; ~v �
8<: uin~e3 if r < 1

2H

~0 if rr 1
2H

: �7�

The outlet boundary requires careful treatment, as it
is comparatively large, and structures have to be able

to leave the domain undisturbedly, i.e. una�ected by
the boundary condition [21]. Sani and Gresho [22,23]
have shown that this can be attained by linear extra-
polation of the out¯ow pressure, temperature and vel-

ocity. We have tested several out¯ow boundary
conditions and have compared the results to simu-
lations in a radially extended geometry. Our results

con®rmed, that linear extrapolation of out¯ow press-
ure, temperature and velocity performed best. Then,
the e�ect of the out¯ow boundary condition only

extended one to two times the platedistance back in
the geometry.
The line r = 0 is singular in cylindrical coordinates.

Therefore, the r-velocity required at this point is un-

available. This is solved by using an arti®cial r-velocity,
obtained by linear interpolation across the centreline
[24], i.e.

vr�0,yj,zk� � 1
2 �vr�Dr,yj,zk� ÿ vr�Dr,yj � p,zk�� �8�

Fig. 3 shows instantaneous horizontal and vertical

projections of the calculated velocities near r=0, for a
strongly three-dimensional ¯ow ®eld, illustrating that
this approach leads to a smooth velocity ®eld near the

singular point.

3.3. Solution strategy

The resulting set of equations is solved with a pre-
dictor±corrector scheme. In the prediction step, the
temperature for the new timestep and the intermediate
r-, z- and y-velocities are calculated. This corresponds

to solving Nr � Nz tridiagonal systems for each of the
four variables. In the correction step the new pressures
are calculated by imposing mass conservation. These

pressures correspond to a correction on the velocities
to obey mass conservation exactly. In this step, a dis-
crete Poisson equation has to be solved. This has been

done with a Direct Fast Poisson solver, where the y-
transformation has been implemented as an FFT. The
z-transformation is done with a matrix vector multipli-

cation. This allows for a nonuniform grid in the z-
direction, and is more e�cient with the comparatively
small amount of cells in this direction.

3.4. Parallelisation

The above method has been parallelised using
domain decomposition in the r-direction. The resulting

Fig. 3. Snapshot of the simulated ¯ow ®eld near the singular point r = 0 when there is no in¯ow. (a) Velocities in the r- and y-
direction, projected on an x±y grid at z=0.8. (b) Velocities in the r- and z-direction.
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ring-shaped grids are distributed over the di�erent pro-
cessors. In the prediction step, boundary data are

exchanged between the processors, followed by solving
the tridiagonal systems in each subdomain. In the cor-
rection step, a similar procedure is followed, apart

from the r-transformation in the Fast Poisson Solver.
In this step, information is required across the di�erent
subgrids. This is solved by decomposing the grid in the

z-direction, just during this transformation. This
requires one large send operation but on systems with
a comparatively fast interprocessor connection this still

leads to an e�cient code.
The e�ciency of the parallelisation has been tested

on two parallel computers: an HP-Convex S-class ser-
ver with four processors, and a Cray T3E. In Table 1,

the speed-up is shown on a grid of Nr � Nz � Ny=100
� 8 � 400=3.2 � 105 points, which is the largest grid
®tting in the memory of a single processor of the Cray.

The table illustrates that a good speedup can be
attained. The results presented below, mostly have
been obtained on 8 processors of the Cray T3E.

3.5. Grid resolution

The grid used for the simulations contains Nr�Nz�
Ny=150 � 12 � 600=1.08 � 106 points. The grid is
nonuniform in the z-direction, in order to resolve the
steep gradients near the walls. The following grid dis-

tribution function is used:

zi � iÿ �1=2�
Nz

ÿ c

2p
sin

�
2p
�iÿ �1=2��

Nz

�
�9�

with c=1/2.
This grid allows Reynolds numbers up to 100 and,

as shown by GroÈ tzback [25], Rayleigh numbers up to
25,000. At higher Reynolds numbers, the central
scheme causes severe wiggles near the inlet, while at
higher Rayleigh numbers the boundary layers are not

su�ciently resolved [25]. Tests on a grid re®ned to Nr

� Nz � Ny=250 � 20 � 1000 resulted in a change in
average Nusselt number below 3%, con®rming that

the selected grid is su�ciently ®ne. On the selected

grid, a single time-step takes approximately 1.5 wall
seconds on eight processors of the Cray T3E.
For the cases tested, of the order of 40,000 time

steps are required to get a result which is independent
of the start up conditions, taking about 20 h on eight
processors of the Cray T3E. Hence, a limited number

of cases could be studied only; these are given in
Table 2.

4. Results

4.1. Rayleigh±BeÂnard case

In the absence of in¯ow, the ¯ow in the present
geometry should exhibit similar characteristics as the
classical Rayleigh±BeÂ nard case, i.e. the buoyancy

driven ¯ow between two in®nite, di�erentially heated
horizontal plates [14,15]. The di�erence is in the
open circular boundary, which can be expected to

cause deviations, as mixed convection ¯ows are
extremely sensitive to boundary conditions.
This has been tested at Re = 0, Ra = 2500 and Pr

= 0.7 (case 1 in Table 2). The initial ®elds were

selected axisymmetric: the variables in all points were
set to zero. Time integration of the ¯ow equations is
continued until the ®nal, quasiperiodic solution has

become independent of the initial conditions.
As can be expected on account of the stress-free

boundary conditions, the onset of instability is near

the outlet of the reactor. This results in torus-shaped,
approximately axisymmetric rolls. The ¯ow ®eld at this
instant is illustrated in Fig. 4a, where the contours of

Table 1

Parallelisation e�ciency on two architectures

Nproc Convex S-class Cray T3E

Wall time (s) Speed-up Wall time (s) Speed-up

1 2.84 1.0 2.65 1.0

2 1.54 1.8 1.46 1.8

4 0.95 3.0 0.78 3.4

8 ± ± 0.44 6.0

Table 2

Parameter combinations studied

Case Re Ra Pr

(1) 0 2500 0.7

(2) 40 3800 0.7

(3) 10 2000 0.7

(4) 50 2000 0.7

(5) 50 5000 0.7

(6) 100 2000 0.7

(7) 100 5000 0.7

(8) 10 2900 0.7

(9) 20 2900 0.7

(10) 35 2900 0.7

(11) 50 2900 0.7

(12) 60 2900 0.7

(13) 85 2900 0.7

(14) 100 2900 0.7

(15) 50 5000 2.0

(16) 50 17,500 7.0
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the z-velocities are plotted in a horizontal cross section

at z = 1/2. The time, in the absence of forced ¯ow

made dimensionless with � ������������������gaDT=H
p �ÿ1, needed for

these instabilities to reach the centre is approximately

100. When the rolls have reached the centre, the large

roll near the outlet becomes unstable and breaks up.

The resulting ¯ow is illustrated in Fig. 4b, again show-

ing a contour plot of the z-velocities at z=1/2.

The instability of the outer recirculation slowly

moves inwards, while at the same time, the small

Fig. 4. Buoyancy induced ¯ow in the absence of a forced ¯ow at di�erent stages of the onset of instability. Pr = 0.7 and Ra =

2500. Contour plot of the instantaneous z-velocities in a cross section at z=1/2: vmin=ÿ0.12; vmax=0.12. (a) Initial, axisymmetric

instability; (b) instability of the outer recirculation; (c) transition to nonaxisymmetric ¯ow; (d) settled ¯ow.
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roll near r= 0 becomes unstable. This is illustrated in

Fig. 4c. The dimensionless time to reach this state is

about 300. Eventually, the ¯ow turns completely non-
axisymmetric and the recirculations are randomly

ordered. This is shown in Fig. 4d, which is an instan-

taneous realisation of the transient ¯ow ®eld. For lar-
ger times, the characteristics of the ¯ow remain

essentially similar to those plotted in Fig. 4d.

The time scale needed for the initial conditions to

damp out is large, typically a few hundred times

the characteristic time scale of the recirculations.
This is due to the long time needed for instabilities

that start near the outlet to reach the centre. This

has the advantage that, in the presence of a forced
¯ow with Re1q 10, the e�ect of the boundary on the

¯ow is small.

As a result of the open boundary, the two-dimen-

sional rolls or three-dimensional hexagons, typical of

Rayleigh±BeÂ nard convection, are not encountered.
Fig. 4d shows that, in the absence of a mean ¯ow,

rolls have the tendency to direct their axis of ro-

tation perpendicularly to the outlet area.

The average Nusselt number for the settled ¯ow in
Fig. 4d is 1.39 and remains approximately constant.

This is in good agreement with the correlation as given

by Hollands et al. [26], predicting a Nusselt number of

1.34. Compared to the initial conditions used in Fig. 4,
the state with a settled Nusselt number can be reached

within a fraction of the number of time steps by start-
ing from a random initial ®eld.

4.2. Thermal instability in the presence of a forced ¯ow

4.2.1. General ¯ow properties
The radially outward forced ¯ow a�ects the position

and shape of the secondary, buoyancy induced ¯ows.
This is illustrated in Fig. 5 for case 3: Re = 10, Ra =
2000, Pr=0.7. The instantaneous contour plots of the
z-velocities are plotted in a cross section at z = 1/2

after a time long enough for the initial transient to
have damped out. The ¯ow plotted in this ®gure may
be separated into three areas with respect to the buoy-

ancy induced ¯ows. (i) For small radial coordinates,
entrance e�ects and the forced ¯ow suppress secondary
¯ows (in Fig. 5 for r 1Q 3). In this area, the ¯ow is

steady and more or less axisymmetric. (ii) At inter-
mediate radial coordinates, the secondary ¯ow corre-
sponds to more or less axisymmetric transversal rolls
(in Fig. 5 for 3 1Q r 1Q 8). The transversal rolls move

radially outward with the forced ¯ow. (iii) At large
radial coordinates, the secondary ¯ow forms a three-
dimensional chaotic pattern (in Fig. 5 for r1q 8). The

¯ow in this part remains transient and the forced ¯ow,
though low, still transports the ¯ow structures radially
outward. The e�ect of the Reynolds, Rayleigh and

Fig. 5. Flow properties in the presence of a forced ¯ow at Re=10, Pr=0.7, and Ra=2000. Contour plot of the instantaneous z-

velocities in a cross section at z=1/2: vmin=ÿ0.07: vmax=0.07.
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Prandtl numbers on the three areas in the ¯ow is dis-
cussed below. Note that near the outlet, there is no
tendency of recirculations to stand with their axis of
rotation perpendicular to the outlet, as was found in

the absence of a forced ¯ow. This indicates that, even
at this low Reynolds number, the e�ect of the open
boundary on the ¯ow within the geometry is small.

4.2.2. E�ect of the Reynolds number
Increasing the Reynolds number can be expected to

increase the e�ect of the forced ¯ow. The part of the
geometry that is dominated by entrance e�ects and the

forced ¯ow therefore will increase with Re. This is il-
lustrated in Fig. 6 for case 4 where Ra and Pr are the
same as in Fig. 5, while the Reynolds number is 50. As

in Fig. 5, the instantaneous contour plots of the z vel-
ocities are plotted in a cross section at z = 1/2. The

maximum and minimum velocities plotted, however,

di�er.

At this higher Reynolds number (Re= 50), the ¯ow

is stationary and axisymmetric in a large part of the

reactor. At r 1 8 the thermal instability of the forced

¯ow becomes visible. The instability immediately leads

to three-dimensional ¯ow, skipping the area with axi-

symmetric rolls. The secondary ¯ows, however, still

show regularities, in the form of `knots' at discrete

angles with more or less equal intervals, and in the cir-

cular or spiral shape of the secondary ¯ow. These

regularities in the secondary ¯ows are due to the sym-

metry imposing e�ect of the forced ¯ow. However, the

e�ect of the secondary ¯ow on the forced ¯ow at these

conditions remains limited due to the low characteristic

velocity of the buoyancy induced ¯ow. This is illus-

trated in Fig. 7, where a contour plot is shown of the

instantaneous r velocities in a cross section in the y±z
plane at r=0.8� rmax.

Fig. 6. E�ect of the Reynolds number. Re=50, Pr=0.7 and Ra=2000. Contour plot of the instantaneous z-velocities in a cross

section at z=1/2: vmin=ÿ0.03; vmax =0.03.

Fig. 7. E�ect of secondary ¯ows on the forced convection at Re=50, Pr=0.7 and Ra=2000. Contour plot of the instantaneous

r-velocities in a cross section in the y±z plane at r=0.8� rmax.
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The results illustrated in Figs. 5 and 6 show that the
Reynolds number a�ects the occurrence of transversal

rolls. Transversal rolls can be found, if the Reynolds
number is su�ciently low to allow for transversal rolls
for small radial coordinates or high curvature num-

bers. Otherwise, the secondary ¯ows will be three-
dimensional. The cases tested indicate that for Pr =
0.7, transversal rolls occur only when the Reynolds

number is su�ciently low for them to be formed at r/H

1Q1/5.

4.2.3. E�ect of the Prandtl number
In a parallel ¯ow, the critical Rayleigh number for

longitudinal rolls is independent of the Prandtl num-
ber, while the critical Rayleigh number for transversal
rolls is approximately proportional to Prandtl (see Eq.

(1)). The e�ect of increasing Prandtl in the present geo-
metry is illustrated in Fig. 8 for cases 15 and 16. Rey-
nolds is 50, while Rayleigh is scaled in order to keep

Ra/Pr constant. For Pr= 2 (Fig. 8a) and Pr= 7 (Fig.
8b), the instantaneous contour plots of the z-velocities
are plotted in a cross section at z=1/2.
At Pr= 2, the thermal instability of the forced ¯ow

results in torus-shaped recirculations (see Fig. 8a). At
a larger radial distance, these torus-shaped rolls break

up and form a more chaotic pattern. This is similar to

the case Re=10, Pr=0.7 and Ra=2000 (see Fig. 5),

though the torus-shaped rolls at this higher Prandtl

number are more axisymmetric and stable.

Fig. 8a is an instantaneous realisation of the transi-

ent ¯ow ®eld. Time series also show the breakup of

the axisymmetric transversal rolls. This is illustrated in

Fig. 9, where temperature has been plotted as a func-

tion of the dimensionless time at position z= 1/2, y=
2 (p/2), and r = 0.6 and 0.8 � rmax, respectively. The

time is made dimensionless with the plate separation H

and vr(H,0.5H ) in Eq. (2).

The simulation is started from a settled ¯ow at Re

=50, Pr=0.7, and Ra=2000. Figure 9 shows that it

takes 50 dimensionless time units for the initial con-

ditions to damp out. Once the ¯ow has settled, the

transversal rolls at r= 0.6� rmax are torus-shaped and

almost symmetric and pass the locations at y=(p/2)
and y=ÿ(p/2) with the same frequency, though with

small phase di�erences (see also Fig. 8a). At position r

= 0.8 � rmax, the ¯ow is completely three-dimensional

and there is little correlation between the signals at

y=p/2 and y=ÿ(p/2).
From the frequency at r = 0.6 � rmax, it can be de-

rived that the velocity of the rolls is 0.9 times the aver-

Fig. 8. E�ect of the Prandtl number. Re=50. Contour plot of the instantaneous z-velocities in a cross section at z=1/2. (a) Pr=

2, Ra=5000, vmin=ÿ0.12; vmax=0.12. (b) Pr=7, Ra=17,500, vmin=ÿ0.12; vmax=0.12.
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age radial velocity at that position. Also in the exper-

iments by Luijkx et al. [1], the velocity of transversal

rolls was found to be of the order of the average ¯uid

velocity. The exact frequency, however, is a function

of the three operating parameters.

Increasing the Prandtl number further to 7 leads to

transversal rolls that, apart from a few disturbances,

remain intact throughout the geometry (see Fig. 8b).

The disturbances that lead to isolated `asymmetry

spots' probably can be attributed to the fact that the

forced velocity and thus the velocity of the rolls have

to decrease as a function of the radial coordinate. As

was argued in Section 2.2, for the velocity of the trans-

versal rolls to decrease and for the ¯ow to remain sym-

metric, rolls have to disappear. This indeed happens as

illustrated in Fig. 10 where the velocities in the r- and

z-direction are shown in a cross section. Several rolls

are pushed away by the main ¯ow between r=7 and r

= 10. At these operating conditions, this leads to a

few small instabilities.

An explanation for the observed Prandtl dependency

may be related to the role of the Prandtl number in

the energy equation (see Eq. (5)). Compare the ¯ow

with a high and a low Prandtl number with identical

Grashof and Reynolds numbers. The magnitude of the
buoyancy term in the momentum equation is the same
for both cases. In the energy equation, however, a high

Prandtl number enlarges the e�ect of the convection
terms relative to the di�usion terms. When the forced
¯ow is important and when the initial instability is

symmetric, the convection terms may enhance axisym-
metry.

4.2.4. E�ect of the Rayleigh number

Increasing the Rayleigh number corresponds to
increasing the importance of the free convection com-
pared to the forced convection. The radial coordinate

where transversal rolls may occur may decrease (see
Fig. 2). In addition, the radial coordinate where the
asymmetric ¯ow corresponding to just free convection
rolls can be expected to decrease as well.

This is illustrated for case 5 in Fig. 11. A contour
plot is plotted of the instantaneous z-velocities at z =
1/2. Fig. 11 has Pr = 0.7, Re = 50 and Ra = 5000.

Compared to case 4 in Fig. 6b, at Ra = 2000, the
onset of thermal instability is more torus-shaped. This
is the result of the entrance e�ects. The torus-shaped

rolls, however, quickly become unstable. At larger

Fig. 9. Time series of the temperature at position z = 1/2, and x = 0.6, ÿ0.6, 0.8 and ÿ0.8 � rmax. Re = 50, Pr = 2 and Ra =

5000.

Fig. 10. Forced ¯ow, pushing away buoyancy induced transversal rolls. Re=50, Pr=7 and Ra=17,500.
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radial coordinates, the chaotic ¯ow of plain Rayleigh±
BeÂ nard convection at Ra=5000 prevails.

5. Concluding remarks

Detailed numerical simulations yielded insight to
the interaction of forced radially outward ¯ow with
secondary, buoyancy induced convection. The axi-

symmetric forced ¯ow a�ects the secondary, three-
dimensional buoyancy induced convection. Close to
the inlet, buoyancy e�ects are suppressed, whereas

for small radial coordinates the buoyancy induced
secondary ¯ows are regulated into almost axisym-
metric torus-shaped rolls. Only at larger radial coor-

dinates the more irregular pattern corresponding to
just buoyancy induced convection takes over. This
is not only a result of the decreasing characteristic
velocity of the forced ¯ow, but also of the decreas-

ing curvature of the mean forced ¯ow, relative to
the spacing of the plates.
The axisymmetry imposing e�ect of the forced ¯ow

increases with increasing Prandtl number, resulting at
Pr=7 even to an almost fully axisymmetric ¯ow. This
probably can be attributed to the role of the Prandtl

number in the energy equation where Prandtl increases
the e�ect of the axisymmetric advective terms. The axi-
symmetry decreases with increasing Rayleigh number

as the Rayleigh number increases the importance of
the nonaxisymmetric free convection.
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